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Abstract. Based on the connection between the q-state Potts model (QPM) and a q-state 
bond-correlated percolation model (QBCPM), we define a non-percolating geometrical 
factor g, and percolating geometrical factor gp which depend only on q and geometrical 
properties of the system. The thermal properties of the QPM could be derived simply from 
g, and g,. The idea is confirmed by an exact calculation for one-dimensional QPM and 
may be extended to other Ising-like spin models. Our formulation also provides a 
geometrical meaning for the finite-size scaling and broadening at first-order phase transitions 
of the spin model. 

Since Onsager (1944) published the exact solution of the spin-; simple Ising model 
on a square lattice, many Ising-like spin models, e.g. the q-state Potts model (Potts 
1952, Wu 1982), have been proposed and studied. Since Hammersley (1957) and 
Broadbent and Hammersley ( 1957) advocated the concept of percolation, percolation 
has become an important branch of statistical mechanics (Essam 1973, 1980, Stauffer 
1979, Stauffer er a1 1982, Deutscher et a1 1983). It has been found that the phase 
transition in the Ising-like spin model and the percolation transition in the lattice 
percolation model have many characteristics in common. The singular behaviour in 
the latter is clearly related to the onset of the appearance of the percolating cluster in 
the system. Since Muller-Krumbhaar (1974) first studied the possible connection 
between the phase transition in the Ising model and the percolation transition of a 
correlated percolation model, much effort (for reviews see Stauff er 1979, Stauff er er a1 
1982, KertCsz et a1 1983, Hu 1984a) has been devoted to studying whether the phase 
transition in the Ising model has a mechanism similar to that of the percolation 
transition, i.e. the onset of the appearance of the percolating cluster. Using a new idea 
to define ‘clusters’ for Ising-like spin models, recently Hu (1983a, b, 1984a, b, c, d, e, 
1985a, b ) t  has formally shown that the partition functions of many Ising-like spin 
models are the generating functions of certain correlated percolation or cluster models 
which have the same critical properties as the corresponding spin models. Thus in 
Hu’s picture of ‘clusters’, the phase transitions in many Ising-like spin models are 
indeed the percolation transition and the physical quantities of the spin models are 
related to the geometrical quantities of the corresponding percolation models. 

It is of interest to know whether such connections could help us to understand 
more clearly, or to calculate more easily, the thermal properties of the spin model. 
Based on the connection (Hu 1984c, d)  between the q-state Potts model (QPM) and a 
q-state bond-correlated percolation model (QBCPM), we could define a non-percolating 

f The reader is advised to read Hu (1984a) first. 
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geometrical factor gf and percolating geometrical factor g, which depend only on the 
geometrical properties of the system. In this paper we propose that the thermal 
properties of the QPM could be deduced simply from the logarithm of such geometrical 
factors and their derivatives. Our idea is confirmed by an exact calculation for 
one-dimensional QPM and could be extended to other Ising-like spin models. 

Suppose we have a lattice G of E nearest-neighbour ( N N )  bonds and N sites 
labelled by i = 1, 2 ,  . . . , N. To each lattice site, we assign a q-state Potts spin s, which 
has spin components j ,  j - 1,. . . , - ( j  - l), -j, where 2 j  + 1 = q and q is a positive 
integer. The partition function of the q-state Potts model (QPM) on G may be written 
ast  

2, = ,i n e x p [ W s , ,  s,)I n exp(Bs1) 
S i = - J  ( I J )  1 

Here the first product and the second product are over all N N  bonds and sites of G, 
respectively, K = pJ,  B = ph; 6(si, si )  = 1 when si = sj and S(si, s,) = 0 when si f s;. 
Note that the coupling of B with si in (1) is different from that of Wu (1982). Now we 
expand the first product in (1) and use the subgraphs G'c  G to represent the terms 
in the expansion. For each N N  bond (ij) there occurs in (1) the two terms 1 and 
(e" - 1) S ( s i ,  si) ;  subgraphs G' with no (ij) bond correspond to the former and those 
with an (ij) bond to the latter. There are b( G') bonds in the subgraph G', 0 S b( G') 6 E. 
If a particular bond (ij) is attached by the factor (eK - 1)6(si, s j ) ,  then si = sj after 
summing over spin states and the sites i and j are said to be in the same cluster. 

In general, if two sites can be connected through a series of bonds, they are said 
to be in the same cluster. The cluster which extends from one side of G to the opposite 
side of G is called the percolating cluster; otherwise, it is called the non-percolating 
or finite cluster. The percolating cluster becomes an infinite cluster in the limit N + CO. 

A given G' usually contains a large number of independent clusters including isolated 
sites which do not connect with any other sites via bonds. For a given G', we can sum 
over all spin states and in such a summation only the terms where all spins in the 
same cluster have the same spin component have non-zero contributions. However, 
spins in different clusters of G' could have different spin components. After summing 
over spin states, we have$ 

Z ,  = (eK - 1 " ' " " ~ { e x p ( ~ n j ) + e x p [ ~ n , ( j - 1 ) ] + .  . 
G'E G C 

+ exp( - B n J ) }  

where II, extends over all clusters c in G', n, = n,( G') is the number of sites in the 
cluster c, 

( 2 b )  

( 2 c )  

p = 1 -e-" 

Z c ( B )  =exp(Bnj)+exp[Bn,(j-  1)]+. . .+exp(-Bnj).  

t Do not confuse the spin component ' j '  with the spin index in 's,'. 
$ The following expansion for E = 0 has been derived by other authors. Wu (1982) considered the coupling 
of QPM and E in a different way. See the discussions at the end of Hu (1984a, b). 
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Note that Zc( B )  is the partition function for a single equivalent spin with moment n,. 
The magnetic moment of the system is given by 

a 1 a 
-1n zN =- (eK - l)b(G’)n Z J B )  z - ln  Z c ( B )  
dB Z N  G ’ s G  C’ c a B  

where 

and where B j ( x )  is the Brillouin function (Reif 1965) 

asx+co 
asx+O. (3c) B j ( x )  = j - ’ [ (  j + f )  coth( j + f ) x  -f coth 4x1, 

B j ( x )  determines the magnetic moment of a paramagnetic system (Reif 1965). 
The spontaneous magnetisation is defined by 

M(G, p )  = lim lim -(ln ZN)/N. 
a 

B+O+ N+m aB 
If for given G’, n c ( N )  is the number of sites in cluster c for a sample of size N then, 
as N + 03, if c is a non-percolating (finite) cluster nc( N )  + nc < 03 but if c is a percolating 
(infinite) cluster nc( N )  + 03. Thus 

0 if c is finite 
q”bG” if c is infinite 

lim lim Bj( Bn,) n z( Bn,,) = 
B+O+ N-rm C ‘  

and 

M (  G, P)  = j lim W-’ T (  G‘, p ,  q ) [  N*( G ‘ ) / N ]  
G‘C G N-m 

= j (  N*( G’))o.  (4) 

The internal energy U and the specific heat Ch of the QPM in the thermodynamic limit 
N + CO and for B + O+ are given by 

-a V ( G , p ) =  lim lim - ( lnZN) /N  
B+O+ N+m ap 

J 23 = - - (b(G‘))  - ---p 
P O- 2 p  

-- = [-fz( 1 - p ) p  + (( ab( G’))2)o].  
P2 
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(N*(G’)),= lim W-’ r(G’,p,  q )[N*(G’) /Nl  
N-02 G’E G 

p = lim W-’ c .rr(G’,p, q ) ( b ( G ‘ ) / E )  
N+m G‘E G 

( 9 )  

Sb( G‘) = b( G’) - [ b( G‘)],, (12) 

and we have used (Q(  G’))o to represent the mean value of a subgraph-dependent 
quantity Q(G’) per site in the limit N+co (see also (9)). N*(G‘) in (4) is the total 
number of sites in the percolating clusters of G, nfiG‘) in (7) is the total number of 
non-percolating (i.e. finite) clusters in G’ and z in (5) and (6) is the coordination 
number of G. It is obvious that M (  G, p ) / j  is the percolation probability of the following 
q-state bond-correlated percolation model (QBCPM) on G. 

(1) All sites of G are occupied and each bond of G is attached with the bond 
probability p = 1 - eCK. 

(2) The overall probability of G‘E G is enh’anced by a factor q for each finite 
cluster in G’. Equations (5) and (6) relate U and Ch of the QPM to the average number 
of occupied bonds, jj, and tq the fluctuations of the number of occupied bonds 
((Sb(G’))*),, for the QBCPM. Thus 2, of (2) is the generating function of the QBCPM. 

Now we classify all subgraphs G’ G G into subgraphs with only non-percolating 
clusters, Gi, and subgraphs with at least one percolating cluster, Gb, and consider the 
partial sumst 

Since only subgraphs Gb contribute to M (  G, p ) ,  which is zero for T > T, and non-zero 
for T < T,, it is reasonable to expect that for p < p c  = 1 - eKc = 1 - 

w,>> w, (15) 

for P>Pc, 

w,<< w, (16) 

and at p c  

w,= w,. (17) 

Equation (17) is called the geometrical condition of phase transitions. 

‘t From now on, we consider only B + O+ 
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In the following, we will consider fixed but very large E. Wf and W, may be 
represented as follows: 

Here 

The summations in (22) and (23) are over all GI. and Gb, respectively, with a fixed 
fraction of occupied bonds R. Since gf and g, are independent of K = J /  kT, they will 
be called the non-percolating geometrical factor and percolating geometrical factor, 
respectively. The dependence of Wf and W, on K comes only from I ( K ,  R)  and we 
will call Z ( K ,  R)  the interaction factor. 

For a fixed K ,  Z ( K ,  R) is a monotonous function of R, but g,(q, R)  and g,(q, R )  
are expected to peak sharply at certain values. It is reasonable to expect that the 
integrands in (18) and (19) also peak sharply at certain values, say Rf and R, 
respectively, which are solutions of the equations 

d d 
dR dR 

d d 

-[In I ( K ,  R)gfiq, 

-[In I ( K ,  R)g,(q, R)14=  E W e K  - 1) +&In g,(q, 

= E M e K  - l)+-tln gdq, R)IRf=O (24) 

= 0. (25) dR 

Expanding the logarithm of the integrands in (18) and (19) at Rf and R,, respectively, 
and keeping only the leading and the quadratic terms, we have 

Wfz E I ( K ,  RdgXq, Rf) lo' exp[-(R - RfI2/rfl  dR 
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where 

A f =  EZ(K,  Rf)gXq, Rf) (30) 

A, = E Z ( K  R,)g,(q, RP) (31) 

Yf = RfKf J f= ( l -Rf ) l r f  (32) 

Y ,  = R,/T, 1, = (1 - Rp)/rp.  (33) 
In the very large E limit, we expect that Tf and r,, the half-widths of the peaks at Rf 
and R,, respectively, tend to zero and yf j j f ,  y ,  and J p  tend to a. The integrations in 
(26) and (27) simply give the constant A. 

Thus 
m 

Wf = A$, [ exp( - y z )  dy = AfT& = WF (34) 

(35) 

-m 

W 

W, = APT, exp( - y 2 )  dy = APT,& = Wg. IW 
The free energy per spin is given by 

1 
f ( G , q , K ) =  N-m lim -ln(WT+ N W;). (36) 

For a geometrical quantity Q(R)  of the QBCPM which depends on R, we may use 
the representations of (18) and (19) to calculate the average value of Q(R):  

If Q(R) is a sufficiently smooth function of R, e.g. a low degree polynomial, the first 
and second integrands in the numerator of (37) still peak sharply at Rf and R,, 
respectively. We may proceed as before to carry out the integrations. 

For example, the average number of occupied bonds (per bond), p,  is given by 

- [ERIav - A,I;exp[-(R- R f ) 2 / r f ] R d R + A p ~ ~ e x p [ - ( R - R , ) 2 / r ~ ] R  dR 
P=-- AfjAexp[-(R- Rf)’/rf] dR+A,j:exp[-(R- RP)’/r:] dR E 

WT Rf + W; R, - - 
w;+ w; * 

The fluctuation of the number of bonds is given by 

- - AfE2 exp[ -( R - Rf)’/T:]( R -p) ’  dR + APEZ 
N (  WT + Wg) 

exp[ -( R - R,)’/T;]( R -8)’ dR 
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For T >  T,, WF >> WE and we have 

p = R ,  
((Sb(G'))*),=:zErf. 

For T < T,, WF<( WE and we have 
- 

jj= R, 

( (ab(  G ' ) ) ~ ) ,  =&Er;. 

At T =  T,, WT= WE and we have 

p = ;( R, + R,) 

(42) 

(43) 

(44) 

(45) 
E 2  

(( Sb( G'))') --[r f+ r; + ( R P  - &)'I. 
'-4N 

Assuming at T, 

ER,- ER,= boN" 

where a and b are constants and 0 s  a S 1,  we have 

(( 66(  G ' ) ) 2 ) o = z ( T f  + r;) +ib;N2"-'. (47) 
E 2  

The second term of (47) gives the singular part of the specific heat C$ which is 

(48) C,* - Na/(2-a) 

from the finite-size scaling of the specific heat at second-order phase transitions (Barber 
1983). Identifying 2a - 1 with a / ( 2  - a ) ,  we have 

1 - 2 - -  
a a 

2a-1  a=-- (49) 

i.e. a increases with a. 
To demonstrate that we may actually calculate the physical quantity of the QPM 

from the geometrical factor of the QBCPM, we now carry out an exact calculation for 
the one-dimensional system with periodic boundary conditions. In such a system, 
E = N, z = 2 ,  g,(q,  R )  = O  for O S  R <  1 and gxq, 1 )  = O .  

It follows from the Euier theorem that for any subgraph G' with b( G') = NR < 1 ,  
the number of clusters is given by nXG') = N - b( G') .  Thus for a fixed R = b( G ' ) / N ,  
nXG') is also fixed and the summation in (22) is reduced to the problem of counting 
the number of independent subgraphs for a fixed number of occupied bonds. Therefore 

gxq, R )  = CRNNqN-RN = = N !  q N ( l - R )  

( N -  R N ) ! R N !  

for R < 1. Using the left-hand side of (50) in (24) and (28), we find that in the large 
E limit 

eK - 1  
e + q - 1  R f =  K 

2q(eK - 1) 
(e +q-1)* '  

TfE=2RXl-R,)=  

Thus r f  goes to zero as 1/*. 
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It follows from (36), (40), (41), (5) and (6) that 

f (  G, q, K ) = ln(eK + q - 1) 

J eK J 
U ( G, p ) = - -p = - 

P e K + q - l  

(53) 

(54) 

The results of (53), (56) and (57) are identical with those obtained from the standard 
transfer matrix method where the largest eigenvalue of the transfer matrix is eK + q - 1 
(Hu and Lee 1984). 

For systems in higher dimensions, it is not easy to calculate g, and g, exactly. 
However, one may use the Monte Carlo simulation method to calculate the shapes of 
g, and g, and the ratio gr/g, from which one may obtain U, c h ,  T, and a. However, 
the calculation o f f (  G, q, K )  requires the absolute magnitudes of g, and g, which are 
not easily available from Monte Carlo simulations for systems with q f 1. 

Equations (46) and (49) may be used to explain the change in the phase transition 
behaviour of the QPM on dimensions d 2 2 when q is increased (Hu 1984c, d).  

It follows from (7) that the subgraphs with larger numbers of finite clusters increase 
their relative probability weight when q is increased. For a given R < 1 we expect that 
the subgraphs Gi contributing to the summation of (22) are usually more compact, 
and hence have more closed loops and finite clusters (Euler relations), than the 
subgraphs contributing to the summation of (23). Usually, the smaller the value of R 
the larger the number nf(G’) in G‘. Therefore when q is increased g, will increase 
faster than g, and the peak of g, will move toward smaller values of R with a speed 
faster than that of g,. After increasing q to a new value, we must also increase K to 
a new value so that (17), (24) and (25) may still be true. At the new K ,  the separation 
between R ,  and Rf is expected to increase, i.e. a of (46) will increase with q. It follows 
from (49) that a will increase with q. When q is larger than a critical value qc ,  a of 
(46) will assume its largest value 1 and we have 

E ( R , -  R f ) =  boN (58) 

I‘ N 
k K 2  
4p2 O 4kTf 

CE =-b2N=- (59) 

I =  Ut-  U-=(J /p)bo  (60) 
where Ut and U -  are internal energies at Tc+ E and Tc-  E ,  respectively, with E being 
an infinitesimal positive number. Thus for q > qc,  the latent heat 1 > 0 and the phase 
transition is first order. Equation (59) is the finite-size scaling of specific heat at a 
first-order phase transition (Barber 1983, Hu and Kleban 1981, 1983, Kleban and Hu 
1982). The finite-size rounding of the transition temperature T, at a first-order phase 
transition may be estimated from the equation (Imry 1980) 

CE- IlAT,.  (61) 
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It follows from equations (59) and (61) that 

A T J  T, - kT/ NI E 11 N u  

which is consistent with the results proposed by Imry (1980). 
In conclusion, we have shown that the phase transition in the QPM corresponds to 

the percolation transition of a QBCPM and the thermal properties of the QPM could be 
derived simply from g, and g,. Using the geometrical condition of the phase transition 
based on such a connection, we have given the geometrical interpretation of the increase 
of a with q for q G qc, changeover from a second-order to a first-order phase transition 
as q increases (Wu 1982), finite-size scaling of specific heat and the rounding of 
transition temperature at a first-order phase transition. 

The theory presented above may be extended to other interacting systems which 
have the corresponding correlated percolation or cluster models. The details have 
been and will be given elsewhere (Hu 1985a, b and unpublished data). 
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